Gauss maps with nontrivial separable degree in positive characteristic

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separable Endomorphisms of Surfaces in Positive Characteristic

The structure of non-singular projective surfaces admitting non-isomorphic surjective separable endomorphisms is studied in the positive characteristic case. The case of characteristic zero is treated in [2], [16] (cf. [3]). Many similar classification results are obtained also in this case; on the other hand, some examples peculiar to the positive characteristic are given explicitly.

متن کامل

Curves Whose Secant Degree Is One in Positive Characteristic

Here we study (in positive characteristic) integral curves X ⊂ Pr with secant degree one, i.e., for which a general P ∈ Seck−1(X) is in a unique k-secant (k − 1)-dimensional linear subspace.

متن کامل

Foliations with Degenerate Gauss Maps on P

We obtain a classification of codimension one holomorphic foliations on P with degenerate Gauss maps.

متن کامل

Order of Gauss periods in large characteristic ∗ †

Let p be the characteristic of Fq and let q be a primitive root modulo a prime r = 2n + 1. Let β ∈ Fq2n be a primitive rth root of unity. We prove that the multiplicative order of the Gauss period β + β−1 is at least (log p)c logn for some c > 0. This improves the bound obtained by Ahmadi, Shparlinski and Voloch when p is very large compared with n. We also obtain bounds for ”most” p.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2001

ISSN: 0022-4049

DOI: 10.1016/s0022-4049(99)00118-8